Planning & Design Commission:
Steve Swant, Executive Vice President for Administration & Finance
Chuck Rhode, Associate Vice President for Facilities Management
Susan Maxman
Linda Jewell
Carol Johnson
David Miller
Frank Harmon
Alan Balfour, Dean of the College of Architecture
Bunny Tucker, Graduate Student in the College of Architecture
Scott Levitan
Staff Extension to the PDC:
Alyn Pruett and Rob Fisher

Executive Planning & Design Commission:
Amir Rahnamay-Azar, Senior Vice President for Administration & Finance
John Majeroni, Executive Director of Real Estate
Mark Demyanek, Assistant Vice President for Environmental Health & Safety
Howard Wertheimer, Director of Capital Planning & Space Management
Scott Jones, Director of Facilities
Debbi Greene, Assistant Director of Space Management

Capital Planning & Space Management:
Howard Wertheimer, Director of Capital Planning & Space Management
Dan Nemec, Assistant Director of CPSM
Anne Boykin-Smith, Master Planner, CPSM
Jason Gregory, Senior Planner, CPSM
Kathryn Horne, Senior Planner, CPSM

Campus Services/Housing/Dining:
Paul Strouts, Vice President of Campus Services
Rich Steele, Senior Director of Auxiliary Services
Mike Black, Executive Director of Housing
Fran Gillis, GT Housing
Joy Jenkins, Construction Project Manager
Dan Morrison, Director of Residential Life
Staci Flores, Sodexo
Brian Sosonsky, Sodexo

Facilities:
Don Alexander, Utilities Engineer
David Chandler, Electrical Engineer
Cindy Jackson, Waste Management & Recycling
Larry Labbe, Fire Marshal
Kim Wilson, Project Manager for Glenn & Towers Project

Parking & Transportation:
Lance Lunsway, Director
David Santa Ana, Assistant Director of Parking
David Williamson, Assistant Director of Transportation

Police:
Jeff Hunnicutt

Glenn & Towers Design Team:
David Oakland, VMDO
James Kovach, VMDO
Peter O’Shea, Siteeworks

Master Plan Team:
Skip Burck, Principal, Richard Burck Associates
Will Trimble, Project Manager, Richard Burck Associates
Christopher Conklin, Director of Transportation Systems, VHB
Daniel Lovas, Senior Transportation Engineer, VHB
Jim Winer, Principal, Make 3
Jim Hamilton, Principal, Southern Civil Engineers
Table of Contents

A. Executive Summary .. 1
 Next Steps ... 2
B. Introduction ... 3
C. Design Goals ... 4
D. History .. 5
E. Site Inventory ... 7
 Service Areas .. 7
 Existing Trees/Significant Trees 8
 Landscape Types 9
 Existing Topography 10
 Existing Landforms and Grading 11
 Bike Counts .. 12
 Security Areas .. 13
 Pedestrian Circulation 14
F. Traffic .. 17
 Master Plan ... 17
 4th Street Extension 18
 3rd Street .. 19
 Techwood Drive Options 20
 Techwood Drive Final 22
G. South Sector ... 24
 Stakeholders ... 24
 Accessibility ... 25
 Service loading (Techwood Drive) 26
 Britain Dining Hall North 29
 Britain Dining Hall West 32
 Britain Dining Hall Loading Dock / South 34
 Final Plan and Recommendations 42
H. North Sector ... 46
 Historic Preservation 48
 GIT Recommendations 49
 Master Plan Approach 51

Concept .. 52
Approach .. 54
Sequential .. 56
Traffic .. 62
Utility ... 64
I. Connector Edge .. 66
 Master Plan ... 66
 Existing Conditions 67
 Recommendation 68
J. Sector Plan ... 69
 Grading .. 69
 Landscape Types 70
 Trees ... 71
 Stormwater Strategies 72
 Bike Counts .. 76
 Trash/Service 78
 Utilities .. 79
K. Appendix .. 80
 Eco Performance Zones (LMP) 80
 Vegetation Communities (LMP) 81
 Campus Corridor (LMP) 82
 Transit Stops (LMP) 83
The Goal of the East Campus Master Plan is to foster a long term vision that aligns with Georgia Tech's larger mission, strategic plan, sustainability objectives and strategic initiatives to create a physically and socially unified landscape that supports well being and encourages interaction between the freshmen who will live there. The Master Plan approached the site with a broad lens that focused on unifying the Sector through landscape and building improvements, providing accessibility, clarity and the creation of a consistent landscape vocabulary.

Brittain Dining Hall is the hub and programmatic node for the entire Sector. Students visit Brittain Dining Hall as often as 3 times daily, if not more, to access the attached laundry and convenience store. Renovation and consolidation of services and loading to the East service area will alleviate two major pedestrian conflicts and allow the building to unify the Smith landscape and the Glenn/Towers Quad into a cohesive landscape, and not act as a barrier. The renovation will also alleviate pressure within the landscape to solve grading problems and accessibility with the addition of two externally accessed elevators. To accommodate and access the new service area it is proposed that 3rd Street be turned into a pedestrian way, and 4th Street and Williams be extended creating a new loop at the north end of the Sector. Opening the 3rd Street tunnel to pedestrian traffic and construction of a parking structure on the other side of the highway will create a much stronger connection between the Sector and the campus to the east.

To further integrate the north parcel of the Sector with the south, systematic demolition and new construction at the Matheson Quad will allow a new organization of residence halls to emerge that will embrace the south parcel, creating a more unified Sector. A new community room and social space within the North Quad will act as an additional draw to attract students north, across 3rd Street, encouraging greater interaction between students.

NEXT STEPS

• Develop a Schematic Design for architectural improvements to Brittain Dining Hall, to include a meeting room, service elevator, loading dock, storage and public elevators.
• Develop a Schematic Design for the area north of Brittain Dining Hall, the proposed loading dock to the east and the former dock to the south including accessibility and recycling.
• Develop a preliminary study on piping overflow water from the underground stream at Bobby Dodd Stadium to the East Campus Housing Sector. The study should include cistern studies for the Sector and possible collection of condensate and roof water.
• Enhanced evaluation of the Matheson Quad for perceived architectural significance prior to establishing a strategy of demolition and new construction or renovation.
• Develop a Schematic Design that addresses accessibility to Brittain Dining Hall from Techwood Drive.
The East Campus Housing Sector is home to all of Georgia Tech’s freshmen students and contains some of the oldest buildings on campus. The design of a new community building and proposed dorm renovations resulted in the need for a master plan to integrate these proposed changes with immediate and future needs within this historic sector. Richard Burck Associates, along with Make3 Architects, Vanasse Hangen Brustlin traffic engineers and Southern Civil Engineers were tasked with creating a master plan that unifies the landscape, eliminates service and pedestrian conflicts, incorporates stormwater strategies, resolves extreme topographical challenges and clarifies vehicular and pedestrian circulation while establishing a clear strategy for future program needs.
C. Design Goals

| Provide a Long-Term Vision | Transform the site to align with Georgia Tech’s larger mission, strategic plan, sustainability objectives, and strategic initiatives |
| Create a Memorable, More Deliberate, and Cohesive Landscape | Address the challenges of usability, accessibility, and sustainability
Develop the diagonal grade changes, site walls, ramps, stairs, open spaces, trees, and planting into a consistent landscape vocabulary |
| Develop the Site to Facilitate Community Formation | Provide landscapes for both active and passive activities |
| Determine the Capacity of the Site for Additional Building Program | Including but not limited to additional housing and retail
Develop the north end of the project area into a more integrated design composition |
Integrate the Master Plan with Future Planning Initiatives	Including but not limited to the 3rd street tunnel and the north avenue bridge
Integrate Brittain Dining Hall	Have the surrounding pedestrian oriented campus embrace this key social building
Study Alternative Road Strategies	Investigate modifying, adding, and repurposing roads to improve vehicular and pedestrian circulation
Evaluate Parking	Accommodate parking for RA’s, ADA, and short-term visitors as well as temporary parking for move-in/out and game days within street and pedestrian zones
Identify a solution for displaced parking within the study area	
Improve Service Areas	Redesign or relocate service areas in high visibility and high use pedestrian areas
Identify and Facilitate Pedestrian Circulation Desire Lines	Improve Techwood drive sidewalk as a key pedestrian corridor addressing sidewalk width, utility poles, street trees, furniture, east side grade change, and game-day needs
Define a Framework for Bicycle Use	Recommend improved bicycle circulation and storage within the project area
Mitigate Freeway Adjacency	Create a unified sector edge that buffers the freeway
Develop a Comprehensive Stormwater Management Plan	Investigate multiple strategies to reuse or infiltrate water on site
Address Security Concerns for This Sector	Provide landscape adjacencies to increase pedestrian activity
The Sector was part of the urban fabric of the city of Atlanta, with orthogonal streets overlaid on sloping topography. The Sector was initially anchored by the placement of Brittain Dining Hall flanked by two small dorms and an open lawn down to Techwood Drive. This ultimately defined how the Sector would evolve. Three more dorms, in the Collegiate Gothic style of brick and limestone to match Brittain Dining Hall, were added in the 1940s with facades facing the Techwood Drive and Williams Street. As the dorms engaged the streets, the center spaces of the block used for service eventually became areas of conflict. The Sector evolved quickly with the addition of the two largest dorms Glenn and Towers, which, due to their topographic relationship to the street, pushed its front doors inward to create a quad with the stained glass windows of Brittain Dining Hall as its southern terminus.

In the late 1940s and early 1950s the Sector and Georgia Tech were severed from the city of Atlanta by the construction of the I-75/I-85 Corridor, and its relationship to the city street grid was forever changed. 3rd Street and 4th Street were bisected by the new highway and Williams Street was soon reduced to a two-block one-way street.

The Matheson Quad, comprised of five dorms, was added in the 1960s, and being of the Modern Style, it was a departure from the existing collegiate gothic architecture to the south. Like Glenn and Towers the quad is inwardly focused and topographically disconnected from Techwood Drive. Future widening of I-75/I-85 later compressed Williams Street even further and essentially turned ornate facades into back doors, as circulation refocused to Techwood Drive. The coming of the Olympics in 1996 forced Georgia Tech to re-assess housing, and a significant amount of new apartment style housing was built, resulting in the 4th Street Quad and its lawn at the very north of the Sector.
As the Sector evolved from an outward facing typology to mixture of outward and inward relationships, the service areas and student circulation patterns became a conflicting use of space. Currently, students travel through service areas on a regular basis while walking to and from class or Brittain Dining Hall. The service areas are occupied by dumpsters for trash and lines of blue bins for recycling. These areas are often used for parking service vehicles and active collection of refuse. Brittain Dining Hall’s loading dock receives the most traffic for deliveries and general service access. The athletic center across the Techwood Drive utilizes the dumpsters between Glenn and Towers for trash disposal. Trash collection is currently a complicated dance, dumpsters are collected individually by a small vehicle and delivered to the parking lot to the north of the Sector. Once there, the dumpsters are unloaded into a larger collection vehicle and then returned to their original location.
EXISTING TREES / SIGNIFICANT TREES

The Sector, due to its age, boasts significant canopy coverage provided by mature/aging trees. Oaks are the primary large canopy tree with medium-sized trees supplanting the coverage. Techwood Drive, from North Avenue to 3rd Street, is planted with crape myrtles and switches to Bradford pears north of 3rd Street. Small ornamental tree plantings comprised of Japanese maples, cherries, and river birch surround smaller landscape areas. Out of the entire Sector, the area between Matheson Quad and the highway is the only 'naturalized' area, and consists predominantly of oaks of various age and sizes.
Building patterns and topography combine to create an inconsistent mix of landscaped spaces. Through severe grading and terracing, flat areas for lawn have been created, while the rest of the Sector features smaller discrete areas of paving for student gathering. These plaza areas feature active and passive programming and often have seating, bike parking, picnic tables, and grills. Only one space is actively programmed for recreation (volleyball) and it is seldom used. Unfortunately, the strongest unifying landscape element throughout the Sector are the ubiquitous railroad-tie walls.
Atlanta features a significant amount of grade change, and Georgia Tech’s East Campus is no exception. The high point of the site is at the intersection of Williams Street and North Avenue, and the site slopes down approximately 70' to the low point at the intersection of Bobby Dodd Way and Techwood Drive. The northernmost quad of 4th Street slopes down toward Bobby Dodd Way and Techwood Drive, but with a less extreme grade change 40'. The low point extends beyond the boundaries of the Sector to the west and north to Peters Parking Deck.
EXISTING LANDFORMS AND GRADING

To create flat, orderly and useful spaces from the challenging topography, the landscape has been graded into a series of steep slopes and plateaus. Building foundations and slopes combine to form four “dams” which define the plateaus as they retain the flat grades behind them. Smith Hall, the only building that is sited perpendicular to the topography, occupies multiple plateaus. The upper dam is the smallest and only encompasses the upper landscape at Smith. The second dam connects to the midblock section of Smith and extends to the service area of Brittain Dining Hall. The lower plateau begins at the lowest floor of Smith, extends through Brittain Dining Hall, and includes the Glenn/Towers quad. The lowest dam retains the entire sector and is expressed as a steep slope and site wall along the Techwood Drive sidewalk.
As Georgia Tech strives to become a more sustainable campus, the need for additional bike parking is growing. Georgia Tech’s goal of proving bike parking for 20% of residents exceeds LEED® minimums, and will require a significant amount of new bicycle parking areas and expanded bike racks.
Georgia Tech’s East Campus has recognizable patterns of public safety concerns. Due to its adjacency to the freeway and North Avenue, the Sector faces more security problems than a typical campus. Indigents loiter at the intersection of Williams Street and North Avenue bothering students. Williams Street feels generally unsafe due to its back door adjacency to the highway and lack of pedestrians. The west side of Perry Hall is mostly hidden from daily pedestrian circulation and is notorious as an area for students who smoke illegal substances. The parking lot to the north of the 4th Street quad, while beyond the scope of this study, has frequent vehicular break-ins, mostly at night.
OBSERVED PEDESTRIAN CIRCULATION

MORNING

NOON
PREDOMINANT PEDESTRIAN CIRCULATION PATTERNS

RBA and CSPM performed a pedestrian circulation count along Techwood Drive to determine quantity and location of pedestrian traffic. Morning circulation patterns confirmed that 3rd Street/Bobby Dodd Way is the primary collector for students as they continue up "freshman hill" to reach the center of campus, classes, and the student union to the west. At noon, there is still a significant amount of pedestrian traffic going up Bobby Dodd Way, and not surprisingly the angled paths leading to Brittain Dining Hall receive heavy use. Students also tend to circulate along Techwood Drive rather than within the Sector. They exit doors and immediately head to paths or through service drives to reach the Techwood Drive sidewalk.
• Provide bus pull-offs where possible.
• Locate shuttle stops on the northern side of the 3rd Street intersection for both directions of travel.
• Locate shuttle stops in proximity to crosswalks on Techwood Drive.
• Consider convenience store/amenities in lower level of Field Residence Hall near pull-off.
As noted in the traffic master plan study by VHB and reiterated by both the Real Estate and Traffic Departments, Georgia Tech’s long term goal is to reopen the 3rd Street pedestrian tunnel and purchase land on the opposite side to develop into a parking garage with a secure tunnel entrance. The parking would alleviate the stress of on-street parking within the Sector and across campus, while also accounting for the elimination of Peters Parking Deck.
The intersection of 3rd Street and Techwood Drive marks the confluence of pedestrian traffic prior to heading up “freshman hill.” Keeping in mind Georgia Tech’s stated intention to re-open 3rd Street tunnel and to connect the north and south parcels of the Sector, it is a natural evolution that 3rd Street would become a pedestrian corridor, yet still allow for emergency and service vehicle access. Parking on 3rd Street would be eliminated, and the loss accommodated in the proposed parking garage on the east side of the tunnel. 3rd Street and the tunnel are not in alignment, but this can be addressed with a gentle curved path, 20’ wide to accommodate emergency needs. Due to the sequencing of the Glenn/Towers connector building, there should be an interim solution that removes traffic from the south side of 3rd Street to create a more pedestrian oriented sidewalk connecting to Bobby Dodd Way.
In order to reinvent 3rd Street as a pedestrian-only corridor, traffic needs to be re-routed elsewhere. Extending 4th Street to meet Williams Street is a logical solution, with its location at the very north portion of the sector. It serves as a natural edge to the fraternities to the north and bookends the Sector with North Avenue. With an appropriate width, it will be able to preserve semi-tractor trailers access to Brittain Dining Hall. It would also provide opportunities for additional on-street parking and act as a buffer to the highway. As a one-way street, it will allow for easy circulation for driving students to exit campus or search for available parking spots.
Techwood Drive is one of the primary traffic pedestrian and vehicular routes on campus. It is the easternmost street within the campus and is a major north/south artery. With Bobby Dodd Stadium to the west, it also must handle multiple programs and frequent closures. During football games, Techwood Drive is closed for RV’s and pedestrian circulation. During student move-in/out it is reduced to one travel lane with angled parking for ease of loading and unloading cars. Following Georgia Tech’s goal of a sustainable campus, bike lanes are proposed as a connection to 5th Street and North Avenue. Design options considered various configurations of bike lanes, sidewalk and drive widths, parking locations and bus pull-offs.
Bobby Dodd Stadium is a massive structure that provides little interest for the pedestrian experience. As noted in the circulation counts, only a few pedestrians were observed walking alongside the stadium, with most students traveling along the east side of Techwood Drive. To enhance the student experience, parking would be relocated to the east side from the west, narrowing the stadium sidewalk to accommodate the additional bike lanes. A widened sidewalk on the east side with a planting strip will provide an appropriately scaled experience for students traveling along Techwood Drive. Along the widened eastern sidewalk, proposed granite sidewalls with a maximum height of 30" and gentle, regraded slopes will address differences in elevation. After overhead utilities are relocated underground, a continuous, unifying cadence of large street trees and a pedestrian-scale light fixtures will offer an enriched pedestrian experience.
TECHWOOD DRIVE SECTIONS

Section A

Section B

Section C

Section D

Section E

Section F
<table>
<thead>
<tr>
<th>REAL ESTATE</th>
<th>STAKEHOLDER COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRIORITIZE 3RD STREET PEDESTRIAN UNDERPASS</td>
<td></td>
</tr>
<tr>
<td>PURCHASE LAND EAST OF DOWNTOWN CONNECTOR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PARKING AND TRANSPORTATION</td>
<td></td>
</tr>
<tr>
<td>PRIORITIZE ENHANCEMENT OF ALTERNATIVE TRANSPORTATION (SHUTTLES, BIKES)</td>
<td></td>
</tr>
<tr>
<td>NO ADDITIONAL PARKING</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>HOUSING</td>
<td></td>
</tr>
<tr>
<td>ALL DORMS WILL BE RENOVATED</td>
<td></td>
</tr>
<tr>
<td>MATHESON AND PERRY ARE POSSIBLE TEAR-DOWNS</td>
<td></td>
</tr>
<tr>
<td>MAXIMIZE OUTDOOR AMENITIES</td>
<td></td>
</tr>
<tr>
<td>INCREASE BIKE STORAGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITIES DESIGN AND CONSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>OVERHEAD UTILITIES ARE BEING PLACED UNDERGROUND</td>
<td></td>
</tr>
<tr>
<td>CISTERN - UTILIZE ROOF RUN-OFF, CONDENSATE AND BOBBY DODD SPRING</td>
<td></td>
</tr>
<tr>
<td>FRONT BURNER ITEMS - STEAM LINE AND ELECTRICAL VAULTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDENT AFFAIRS / GREEK HOUSING</td>
<td></td>
</tr>
<tr>
<td>ADDRESS NEEDS FOR EXPANDING GREEK HOUSING - NEW SORORITY HOUSING</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DINING - SODEXO</td>
<td></td>
</tr>
<tr>
<td>DAILY DELIVERIES INCLUDE A LARGE SEMI AND THREE SMALLER TRUCKS</td>
<td></td>
</tr>
<tr>
<td>RECEPTACLES INCLUDE DUMPSTERS FOR HOUSING, RECYCLING, COMPOST, AND GREASE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GTAA ENVIRONMENTAL HEALTH AND SAFETY CAMPUS</td>
<td></td>
</tr>
<tr>
<td>FIRE MARSHAL</td>
<td></td>
</tr>
<tr>
<td>TECHWOOD DRIVE DELIVERIES COULD BE HANDLED ALONG BOBBY DODD WAY</td>
<td></td>
</tr>
<tr>
<td>TECHWOOD DRIVE IS BARRICADED DURING GAME DAYS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>FACILITIES O+M RECYCLING</td>
<td></td>
</tr>
<tr>
<td>SERVICE DRIVE BETWEEN CLOU DMAN AND GLENN IS A POOR SPACE</td>
<td></td>
</tr>
<tr>
<td>DUMPSTER PICKUP OCCURS THREE TIMES PER WEEK</td>
<td></td>
</tr>
<tr>
<td>RECYCLING PICKUP OCCURS TWO TIMES PER WEEK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GT POLICE</td>
<td></td>
</tr>
<tr>
<td>HIGHEST RISK AREA IS AT THE INTERSECTION OF NORTH AVENUE AND WILLIAMS STREET</td>
<td></td>
</tr>
<tr>
<td>WILLIAMS STREET DOES NOT HAVE ENOUGH PEDESTRIAN ACTIVITY TO BE CONSIDERED SAFE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>RA’S AND STUDENTS</td>
<td></td>
</tr>
<tr>
<td>“FRESHMAN HILL” IS A KEY CIRCULATION DESTINATION AND ROUTE</td>
<td></td>
</tr>
<tr>
<td>BRITAIN DINING HALL LOADING DOCK - “GROSS, NASTY, AND SKETCHY”</td>
<td></td>
</tr>
<tr>
<td>PARKING PROXIMITY TO DORM ROOM FOR STUDENTS IS A NIGHTTIME CONCERN</td>
<td></td>
</tr>
</tbody>
</table>
Accessibility is one of the key design goals for the Sector. Due to the extreme topography and age of buildings, accessible circulation routes are currently nearly non-existent. This Master Plan provides solutions for connecting Brittain Dining Hall to Techwood Drive and utilizes external elevators to link the Glenn/Towers Quad to the upper service area.
Existing Conditions

The service area between Glenn and Cloudman is one of the primary areas of service and pedestrian conflict. It is a large paved area with stacked dumpsters to the south and a row of recycling bins to the north. A quick, informal interview of students noted the unsightly conditions and general inconvenience.
SERVICE LOADING FROM TECHWOOD DRIVE

RECYCLING

STACKED DUMPSTERS
Option A - Consolidate
Recycling and trash would be consolidated to the south, permitting the design of a new outdoor gathering space to occupy the former recycling area.

Option B - Enclosure
Similar to Option A, but consolidates all the trash and recycling into a brick enclosure, which is angled for ease of access.

Option C - Consolidate Services at Brittain Dining Hall
This option is the preferred solution. The trash and recycling service is eliminated entirely and everything is consolidated at a redesigned loading area behind Brittain Dining Hall. Interviewed students noted that it would be equally convenient to bring trash to the area behind Brittain Dining Hall, as they already travel near there for laundry access.
Existing Conditions

As the first building constructed within the Sector, Brittain Dining Hall is the hub, both socially and architecturally. Students come and go from the building throughout the day, but is during meal times that critical pedestrian patterns emerge around Brittain Dining Hall. Physically, Brittain Dining Hall is a drawing force for pedestrians by the placement of the building inconveniently block circulation from Glenn and Towers to the Smith within the southern portion of the sector.
Proposed

The proposed solution creates a continuous quad that is bounded by Brittain Dining Hall, Harrison, Cloudman, Glenn, and Towers and opens up views from the new connector building to the stained glass window of Brittain Dining Hall. The lawn stretches to the south to embrace and include Brittain Dining Hall as part of the quad. The terrace, although not part of the indoor cafeteria, can support seating and an elevated view of the activities on the lawn. An external elevator provides an accessible route to Harrison and the upper Brittain Dining Hall service area. New terraced seating is integrated into the slope while the former service area between Glenn and Cloudman becomes bike parking.
At the front door to Brittain Dining Hall is a wonderfully defined courtyard with Brittain Dining Hall’s tower framed by Cloudman and Harris, but the space is slightly obscured with overgrown trees. Over the years, with the addition of the railroad tie walls, Brittain Dining Hall no longer engages Techwood Drive in a meaningful way. Desire-line angled paths and stairs carry most of the pedestrian traffic within the Sector going to and from Brittain Dining Hall down to Techwood Drive. This area lacks the presence of its historic formality or the purposefulness of a programmed space. Brittain Dining Hall, due to its age, also suffers from lack of accessibility. The ramp in front of Harris is visibly an afterthought and does not fit within the desired aesthetic for this space or integrate well with the sidewalk experience.
Proposed solution

By sloping the grade down in front of Harris and meeting grade at Techwood Drive, an accessible walk could lead a visitor to the front door of Brittain Dining Hall. Proposed angled paths would continue to reflect the predominant flow of pedestrian circulation and could be planted to frame views of the tower. A sloped walk in the north colonnade can access the foyer where an internal ramp would permit access into the dining hall.
BRITTAH DINING HALL - LOADING DOCK / SOUTH
Pedestrian Circulation Within the Loading Dock Area approach sequence
Brittain Dining Hall Loading Dock / South

The most egregious space for vehicular/pedestrian conflicts is at the south loading dock of Brittain Dining Hall. Students from Smith, Brown and destinations further south, are forced to meander through an active loading zone with unsightly views of multiple dumpsters, while dodging trucks and vans.
BRITTAH DINING HALL - LOADING DOCK / SOUTH
Loading Dock Circulation - Pedestrian Conflicts
Option 1

This option recognizes that the loading zone works, despite the pedestrian conflicts. Removal of the railroad ties and replacement with the Georgia Tech granite (per the Landscape Master Plan) provides much needed space for vegetative screening of the loading dock. The upper service area is eliminated and service activities are consolidated to the south loading dock, creating a new landscape at the former upper service area.
Option 2

Option 2 retains the south loading dock in its current location, but decks over the dock to create a garage/loading zone, reducing the visual impact of the dock to a large garage door. This creates a large open flat new landscape on top of the garage as a much needed amenity to the dorms at the south of Brittain Dining Hall. Pedestrians are separated from much of the vehicular traffic. St. Albans School in Washington DC (pictures on right) employed a similar strategy of suppressing the loading dock by decking above it, creating a garden/active space. This option also suggests elimination of the dock to the east to create another landscape space for student use.
BRITTAINE DINING HALL - LOADING DOCK / SOUTH

EAST LOADING DOCK SERVICE AREA

BRITTAINE DINING HALL'S NORTH-SIDE STAINED GLASS WINDOW
Option 3

By consolidating the loading docks to the east of Brittain Dining Hall, traffic is moved to Williams Street, where there is little pedestrian circulation. The east service area provides ample space for multiple truck access and dumpsters for the entire Sector's use. Brittain Dining Hall will require renovation, and new construction of a freight elevator would enable the moving of supplies down to the cafeteria from the upper dock area. A pull-off along Williams Street would allow trucks to queue when necessary and perform backup turning maneuvers while avoiding the off-ramp traffic.
This study shows that it is possible to back into the service area, but blocks that this maneuver temporarily blocks all of Williams Street and is close to the off-ramp traffic.

This study incorporates a pull-off of Williams Street for trucks backing into the loading dock. Traffic can move past the trucks while they are backing up, and there is more buffer room between the turning movements and the off-ramp traffic. This option also allows for the possibility of having extra queue space when multiple trucks are accessing the dock at the same time.
This plan combines all the preferred options into a cohesive Sector Plan, including moving the Brittain Dining Hall loading dock to the East and consolidating all the trash and recycling services. The lawn area at Glenn and Towers extends south and engages Brittain Dining Hall, incorporating it into the quad.
This plan reflects all the recommendations and comments from the PDC. The proposed Brittain Dining Hall Quad has been reconfigured with angled paths to follow desire lines. Pending a trial test by Georgia Tech to relocate the trash and recycling, the PDC suggested keeping the trash and recycling at Cloudman, but in an enclosure to keep it out of sight. The PDC also suggested removal of the arcing accessible path to reduce redundancy. Additionally, this plan reflects updated designs from the Glenn and Towers project.
FINAL PLAN AND RECOMMENDATIONS

Incorporation of PDC and CPSM comments led to consolidating all services east of Brittain Dining Hall. Terraced seating north of Brittain Dining Hall creates an overlook of the quad as a theater with the lawn as the stage. Bike storage is now proposed at the former service area at Cloudman, and smaller seating areas near Glenn and Towers are more integrated with the architecture.
This site plan is a slight revision and alternate to the proposed plan. Due to dining policies, the terrace north of Brittain Dining Hall cannot be utilized as spill-out space from the cafeteria, so it is minimized and no longer elevated. The elevators could be incorporated within the architecture of Brittain Dining Hall and still remain accessible 24/7.
Existing Conditions Matheson Quad

The north parcel contains the most recent dorm additions to the East Campus Housing Sector, with the 4th Street Quad having been constructed in the 90’s. The architecture in the north is very different than the south parcel, with brick as the only unifying material. The Matheson Quad, constructed in the early 60’s, in the Modern Style, is inwardly focused and physically separated from the south parcel and the 4th Street Quad. The 4th Street Quad features more desirable apartment-style suite housing, while the five buildings within the Matheson Quad have "traditional style" floor plans with long hallways and no suites.
stairs between field and hopkins leading down to 3rd street

4th street quad, with oak planting in lawn between the two dorms.

field hall seen from the intersection of bobby dodd way and techwood drive

stairs between field and hopkins leading down to 3rd street
2.5.3 Institutional Value Category 3 – Limited Potential for Preservation

Resources included in Category 3 possess some historic and aesthetic merits but have limited potential for adaptive re-use, and are not critical to the mission-based educational needs of the Institute. These resources may be candidates for removal or replacement with facilities that better serve the current mission of the Institute. Category 3 resources meet one or more of the following criteria:

- possess some architectural or aesthetic value but contribute only marginally to the character of the institution;
- may be significant for associations not related to the history and traditions of the institution and its educational mission;
- are common examples of architectural styles, engineering methods, artistic values or landscape architecture;
- can contribute to the interpretation of the history, development or tradition of the institution but are not necessary to that interpretation;
- have limited potential for continued or adaptive use.

The following nine buildings are recommended to be included in Category 3:

- Army Offices
- Cherry L. Emerson Building and Addition
- Floyd Field Residence Hall
 (for planning purposes)
- Major John Hanson Residence Hall
 (for planning purposes)
- Isaac S. Hopkins Residence Hall
 (for planning purposes)
- Kenneth G. Matheson Residence Hall
 (for planning purposes)
- Mechanical Engineering Research Building
- William G. Perry Residence Hall
 (for planning purposes)
- 401 Ferst Drive
- 490 Tenth Street

Table 5: Anticipated Treatment and Use of Historic Resources from the Campus Historic Preservation Plan Update, 2009

<table>
<thead>
<tr>
<th>Building Name</th>
<th>Date of Construction</th>
<th>Anticipated Use</th>
<th>Anticipated Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floyd Field Residence Hall</td>
<td>1961</td>
<td>Housing</td>
<td>Demolition</td>
</tr>
<tr>
<td>Major John Hanson Residence Hall</td>
<td>1961</td>
<td>Housing</td>
<td>Demolition</td>
</tr>
<tr>
<td>Isaac S. Hopkins Residence Hall</td>
<td>1961</td>
<td>Housing</td>
<td>Demolition</td>
</tr>
<tr>
<td>Kenneth G. Matheson Residence Hall</td>
<td>1961</td>
<td>Housing</td>
<td>Demolition</td>
</tr>
<tr>
<td>Mechanical Engineering Research Building</td>
<td>1961</td>
<td></td>
<td>Demolition</td>
</tr>
<tr>
<td>William G. Perry Residence Hall</td>
<td>1961</td>
<td></td>
<td>Demolition</td>
</tr>
<tr>
<td>401 Ferst Drive</td>
<td>1961</td>
<td></td>
<td>Demolition</td>
</tr>
<tr>
<td>490 Tenth Street</td>
<td>1961</td>
<td></td>
<td>Demolition</td>
</tr>
</tbody>
</table>

2009 Historic Preservation Plan Update

Georgia Tech commissioned a historic preservation plan in 2009. This campus-wide study addresses both buildings and landscapes that are at or near fifty years old. Housing built prior to 1960 generally was recognized as ‘should be preserved’ which includes all dorms south of 3rd Street. All five buildings that comprise the Matheson Quad were recognized for ‘future study’ as an example of the Modern Style, but noted later in the report that all five buildings in the quad are anticipated to be demolished.
The 2009 commissioned report by Georgia Tech makes housing recommendations for the entire campus. The report, in this sector, recommends tearing down Perry and Matheson, based on the assumption that the cost of tear downs and new construction would be similar to the cost of complete renovation. New construction will replace the two and feature a pass-through to the 4th Street Quad, which now includes two new dorms to the east that complete the quad. The new bed total increases by 126 beds. The proposed new construction would create continuity between the modern housing of Matheson Quad with the more recent 4th Street Quad, but this area is still segregated from the southern portion of the Sector by Hanson which acts as a visual and social barrier.
Stakeholder Recommended Sequence

This sequence represents a study requested by the stakeholders. Similar to the recommendations made by the Housing Master Plan, Perry and Matheson are replaced with new dorms with a pass through, and a new dorm that completes the 4th Street quad. After reviewing this option it is clear that is does not allow for the 4th Street extension to Williams Street be created. The dimension between 4th Street dorms and the adjacent Christian Association will not allow for increased vehicular and, especially, semi-tractor trailer traffic to service Brittain Dining Hall. Without 4th Street to handle semi-tractor trailer traffic, 3rd Street would have to remain open for vehicular traffic, continuing the separation of the north and north parcels.
Housing Master Planning Approach

To establish criteria design, it was originally planned that bed count would increase by approximately 110 units based on similar numbers for the 2009 Housing Master Plan. Conversations with Georgia Tech Housing Staff noted that the acquisition of the Roosevelt site has put the total bed count in flux, but the East Campus Housing Sector should not lose more than 100 beds. Conversations with Georgia Tech Housing Staff noted no net loss in freshman housing. It was also noted that all new construction should be suite-style dorms, not traditional housing. Apartment style housing doesn’t fit with Georgia Tech’s desire for promoting community development among freshman students. Suite style can be a hybrid: four two-person rooms with an adjoining bathroom and lounge/common space for every four suites. Common space should be adequately sized to accommodate varied programming.

Our proposed approach to the north parcel housing will consist of three alternative studies:

1. **No tear downs** – Develop the site plan to unify the Sector and simplify circulation patterns. Bed count could be increased with an additional building east of 4th Street quad, or new building could serve Greek housing. Possible programmatic and architectural changes include a convenience store at Field Hall.

2. **Partial tear downs** – The 2009 Housing Master plan identified both Perry and Matheson to be replaced with new dorms. Following that directive, we would explore the demolition of Perry, Matheson, or others, to be replaced with new dorms that would help unify the Sector. This would also allow for the potential expansion of Greek Housing on campus and the possibility of extending Williams Street.

3. **Complete tear down** – This option provides the university with the most flexibility for accommodating future program changes. Extending Williams Street to join with 4th Street relieves the vehicular pressure from 3rd Street and unifies the Sector as a whole. New housing can create socially rich landscapes promoting more interaction between students. This would also allow for the potential expansion of Greek housing on campus.
MASTER PLAN CONCEPT

FIGURE GROUND, SOUTH OF 3RD STREET

FIGURE GROUND, SOUTH OF 3RD STREET SHOWING KEY "COMMUNITY" BUILDINGS AND STUDENT CIRCULATION
• Proposed building arrangement to create a continuous internal open-space network that features centralized “community buildings and proposed common rooms” to give the freshman experience a connected and activated open space.

• Extend Williams Street to remove vehicular traffic from 3rd Street, allowing greater north-south connectivity within the Sector and allowing the 3rd Street pedestrian tunnel to be expressed as a major east-west pedestrian circulation corridor.

• New buildings along the west side to meet Techwood Drive “at grade” to improve pedestrian and ADA access.

• Building layout to allow for logical construction phasing (only one building to be taken out of commission at any one time).

• Building schemes to consider Greek housing.
Existing Housing - 696 beds total

Traditional Style floor plan (Matheson, Field, etc):
- Long halls
- Gang showers
- 2 students per room

Suites Style/Apartment Hybrid (4th Street):
- 2 rooms per bathroom
- 1 student per room

Proposed Housing massing (left)

Suite Style:
- 4 bedrooms and 2 bathrooms per suite
- 2 students per room
- Social/Common space at each floor

50’ x 50’ typical module - 2 suites per module
- 10’ floor to floor
- 16’ floor to floor along Techwood Drive due to topographic conditions.
MASTER PLAN APPROACH

<table>
<thead>
<tr>
<th></th>
<th>4TH STREET QUAD TEAR DOWN</th>
<th>PARTIAL TEAR DOWN</th>
<th>COMPLETE TEAR DOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXISTING ROAD REMAINS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILLIAMS STREET EXTENDS TO 4TH STREET SOUTH INTERSECTION, 3RD STREET TO BECOME PEDESTRIAN PATH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILLIAMS STREET EXTENDS TO 4TH STREET NORTH INTERSECTION, 3RD STREET TO BECOME PEDESTRIAN PATH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matrix showing alternative housing solution north of 3rd street based on various road alignment strategies and various dorm preservation or tear-down strategies.
Existing
Beds - 696
(excluding Golden/Stein)

Phase 1
Demo - 48 beds
Add - 144 beds + 24 beds at Golden/Stein
Total = 792 (net gain 96 beds +24 beds)

Phase 2
Demo - 152 beds
Add - 168 beds + 24 beds at Golden/Stein
Total = 808 (net gain 112 beds +24 beds)

Phase 3
Demo - 122 beds
Add - 108 beds + 24 beds at Golden/Stein
Total = 794 (net gain 98 beds +24 beds)
Phase 4
Demo - 252 beds
Add - 132 beds
Total = 674 (net loss 22 beds + 24 beds)

Phase 5
Demo - 122 beds
Add - 144 beds
Total = 696 (net gain 0 beds + 24 beds)
• Proposed building arrangement to create a continuous internal open-space network that features centralized “community buildings and proposed common rooms” to give the freshman experience a connected and activated open space.

• Extend Williams Street to remove vehicular traffic from 3rd Street, allowing greater north-south connectivity within the Sector and allowing the 3rd Street pedestrian tunnel to be expressed as a major east-west pedestrian circulation corridor.

• New buildings along the west side to meet Techwood Drive “at grade” to improve pedestrian and ADA access.

• Building layout to allow for logical construction phasing (only one building to be taken out of commission at any one time).

• Building schemes to consider Greek housing.
In accordance with Georgia Tech’s Freshman Experience, the Sector plan should be both a physical and social solution to foster as much interaction between students as possible. Brittain Dining Hall is already a social node and attracts students throughout the entire sector. A new secondary node in the northern parcel of the Sector, could be a second attractor to bring students from the southern portion into the northern half. These magnets would help in creating a unified Sector. Existing dorms north of Brown Hall are separated from Techwood Drive topographically. New dorms would address Techwood Drive and serve as a new front to the Sector and be of a similar scale as the existing southern dorms.
Proposed Roads and Parking

The extension of 4th Street and Williams Street will create a significant amount of new on-street parking and preserve a vehicular circulation pattern to what currently exists. 4th Street and Williams Street would remain one-way and would still allow for students to ‘loop’ as they look for available parking spaces.
Existing and Proposed Utilities at 3rd Street

To confirm the feasibility of eliminating the use of vehicular traffic on 3rd Street, realignment with the tunnel, and lowering to access tunnel, it was necessary to verify if there are any existing utilities that would preclude such a redesign. Per our studies, utilities could easily be rerouted to avoid any conflicts.
From the I-75/85 Atlanta Connector, SWA 2011

The city of Atlanta commissioned SWA Group to create a master plan of the I-75/85 corridor. The Master Plan addressed the various edges and adjacencies along the corridor including Georgia Tech. The study recommended highlighting Georgia Tech’s technical sophistication with electricity generating turbines and a highly visible pedestrian corridor. While a visually stimulating and inventive approach, the technology required to harness the kinetic energy from vehicular traffic does not exist, nor would the proposed pedestrian corridor address a circulation desire line or provide a pleasant pedestrian experience.
The subtle topographical change of the highway against the topographically diverse East Campus Sector creates varying sectional experiences. At the north, the highway and the Sector are at even grade, but moving south, the highway is elevated above the Sector and over the 3rd Street pedestrian tunnel. Williams Street then rises to meet the highway and the off-ramp, and both rise yet higher to meet North Avenue.
RECOMMENDATIONS

Proposed Edge

A sitewall can be utilized to help separate and screen the disruptive highway from the Sector. At the north parcel, the sitewall would be free standing, and as it progresses to the south, it would retain the highway. When Williams Street is at grade with the highway, the sitewall would switch to the west side of Williams Street as a free-standing wall. A continuous planting approach would help to unify the edge and buffer the Sector from the highway.
Proposed Landscapes

The new North Parcel would feature an extension of the lawn at the Glenn and Towers Quad, which unifies the two parcels. Using a similar vocabulary in shape, the lawn will support both active and passive play. Plaza areas adjacent to doors will be open for social seating and grilling opportunities. A grab-and-go will be located at the highly used pedestrian corner of Bobby Dodd Way and Techwood Drive and it will extend to the road as a terrace which could be utilized for student groups tables and other temporary activities.
Proposed and Significant Trees

In order to maintain a unified landscape aesthetic, care must be taken to preserve the older, large-canopied oaks within the former Matheson Quad. Additional oaks will be planted to densify and extend the oak canopy throughout the quad. The planting of uniform street tree species along Techwood Drive will join the north and south parcels and create a continuous streetscape.
STORMWATER STRATEGIES

As part of Georgia Tech’s recent Landscape Master Plan, the university has made a commitment to create ecologically sustainable landscapes. With Atlanta’s history of drought conditions, recharging the local aquifers, while reducing stormwater runoff is paramount. Strategies include water infiltration and the capturing of rainwater for campus use, rather than directing it to the storm system.

Cisterns

With the successful implementation of the large Tech Green stormwater cistern in mind, this Master Plan has identified a significant amount of impermeable roof surface in the Sector. Relatively clean water can be collected from the roofs, conveyed and stored for either irrigation or greywater reuse. As there are a significant amount of utilities throughout the Sector, careful consideration of the location for the future cisterns is vital.

Bobby Dodd Spring

A spring feed that formerly fed Peters Park is located below Bobby Dodd Stadium. The spring is currently tapped to fill multiple above-grade cisterns for irrigating Grant Field. It is believed to be feasible to capture the overflow from the existing cisterns for use at the East Campus Housing Sector which will require further studies.
Harvest Stormwater Along Sidewalks to Irrigate Street Trees

Hardscape is the main contributor to stormwater runoff. By capturing stormwater along sidewalks and harvesting it for street tree use, a significant portion of stormwater never makes it to the storm system. Smart use of porous surfacing, such as ‘drain bricks’ at Broad Street in Boston (image to the left), trench drains, or permeable paved surfaces can capture surface water and direct it to the tree rooting zone. Runnels along paths, similar to those found at Waltham Watch Factory and Trinity College (see page 81), reinvent stormwater conveyance as a positive landscape feature while responsibly directing runoff to infiltration zones.
Infiltration Behind Techwood Drive Retaining Walls

Taking their cues from Tech Green and the Clough Commons, proposed site walls along Techwood Drive would create a natural location for stormwater conveyance and infiltration. Crushed stone swales with native grass planting, similar to infiltration beds at Waltham Watch Factory, can absorb storm events and allow for controlled infiltration of water in a highly visible location.
STORMWATER STRATEGIES
Proposed Bike Storage

Existing bike storage is severely limited within the Sector. The proposed landscape improvements, including consolidation of service areas, will make available a significant amount of space for bike parking. Distributing the parking at entrances and including covered storage facilities will provide security and convenience that has been proven to encourage greater bicycle use.
In these plans, trash and service areas have been consolidated to ease collection and reduce conflicts with pedestrians. Similar to the south parcel, a new service area is created along Williams Street, for ease of access by both pedestrians and service vehicles. Future consideration should be given to implementing single-stream recycling which would reduce the amount of receptacles within service areas.
None of the existing utilities preclude future building construction or future vehicular circulation patterns. Moving overhead utilities below grade along Techwood Drive will allow for a mature street tree planting to develop and remove unsightly poles and utility lines. Existing steam tunnels leading to the Perry/Matheson Quad can be utilized for future development but will need to be re-routed north of Brittain Dining Hall. Most importantly, existing utilities will not hamper the location of future cisterns for rainwater harvesting.
VEGETATION COMMUNITIES

PARKLAND PLANT COMMUNITY REQUIREMENTS:
1. A newly planted or amended parkland should have high tree canopy that covers 75-100% of the ground plane. Planting density should be sufficient for to achieve this canopy within 20 years.
2. The majority of the ground plane should remain open with lawn, groundcover or paving, but up to 20% may be covered by shrubs and small trees.
3. Individual tree trunks in open lawn may be mulched without edging, but should not generally be encircled with groundcover.

WOODLAND PLANT COMMUNITY REQUIREMENTS:
1. A newly planted or amended woodland should have a ground coverage of 100% at the overstory level, 65% at the understory level, and 35% at the shrub/herbaceous level. Planting density should be sufficient for achievement in 10 years.
2. A woodland may have a natural or man-made character, as long as some vertical layering is achieved and its composite environmental effect on stormwater is comparable to that of a natural woodland.
3. Predominantly use native tree species from Eco-Region 4b that are genetically predisposed to survival in a developing woodland setting and are part of the old-field to forest successional pattern.
4. Make woodland plantings site specific topography and hydrology should strongly influence plant species composition.
5. Planting density and physiognomy (form) should be based on eco-mimicry - i.e. nature develops woodlands as fast as possible with the maximum amount of plant biomass allowed by a site’s resources. This is commonly seen when an opening occurs in a forest and is spontaneously filled with a thicket of seedlings, which shapes the microclimate close to the ground, conserves moisture, cools soil temperatures, and enhances soil structure and fertility. Trees respond with quick growth, vertical elongation, root fusing and stratification in the shortest possible time.

• Use the species and density of new planting to shape site microclimate, reduce soil temperature, increase soil moisture, and improve soil structure. Having lots of woody stems is more important than having large specimens.
• For new woodland plantings, typically plant 65-75 woody stems per 1000 square feet, made up of overstory trees (40-60%) and understory trees (20-40%) and shrubs (20%).
• Plant a variety of tree sizes from 1" to a maximum of 4" caliper.
• Typical tree spacing should range from 3 to 15 feet.
• Use up to 20% evergreen trees in the combined overstory and understory layers - e.g. pines, magnolias, hollies. Pines specifically provide quick shading that helps the woodland community establish quickly. Pines' deep tap roots improve clay subsoils for permeability and plant growth.

6. Mulch new woodland plantings with a mixture of detritus - wood, leaves, and needles - to jump start a healthy surface soil environment. Allow the litter layer to build up to provide tight nutrient cycling and a healthy soil environment. Utilize campus compost.
7. Manage the new woodland with the mindset that all the trees are one organism, whose form will change over time, as its biomass increases to reach stasis with site resources. Individual trees may be squeezed out by competition but the community is more important than an individual within it.

Credit: Georgia Institute of Technology Landscape Master Plan
CAMPUS DESIGN CORRIDORS

BOBBY DODD WAY - 3RD STREET CORRIDOR

This corridor provides a vital pedestrian link from the center of campus to midtown, utilizing a tunnel under I-75/85 (unused as of 2010). From east to west it passes the football stadium, goes over The Hill district and connects to the Clough Undergraduate Learning Center, Tech Green and the Student Center.

Objectives:
1. Create a strong pedestrian gateway and connection from Midtown to the heart of campus.
2. Preserve the historical identity of the street from Spring Street to Cherry Street.
3. Design as a multi-purpose pedestrian oriented street that can handle emergency and maintenance vehicles, as well as game day crowds.
4. Make the section from Fowler to Cherry pedestrian only.
5. The corridor should take advantage of its topography – notably its highpoint at Cherry Street and its descent to Tech Green.

Requirements: (Also see requirements for individual corridor sections)
1. Tree Canopy provided by street trees (Section 6.2.9 Street Trees) or by adjacent informally arranged trees.
2. Lampposts (Section 6.3.8 Outdoor Lighting)
3. Plaza entries to buildings with furniture.
4. Use corridor to manage stormwater and transfer it to the Eco-Commons-Basin B (Tech Green and Peters Park) for storage and reuse.

BOBBY DODD WAY - 3RD STREET CORRIDOR FROM SPRING STREET TO TECHWOOD DRIVE

Work with the City of Atlanta to make a viable pedestrian link between Spring Street and Techwood Drive, including an improved tunnel under I-75/85.

Specific Requirements for this Section
1. Remove on-street parking on one side of Third Street and narrow travel lanes to 10 feet.
2. Type 4 Pedestrian Walkway (Section 6.3.1 Circulation Types)
3. Add striped bicycle lanes (Section 6.3.5 Bicycle Facilities)
4. GT Traditional Lampposts (Section 6.3.8 Outdoor Lighting)
5. On the GT side of the underpass narrow the street to widen sidewalks and tree planting strips.

NORTH AVENUE CORRIDOR

When Georgia Tech was founded in 1886, North Avenue was on the edge of the City of Atlanta. Beyond it lay the countryside. Today it remains the Institute’s historical address and for many it remains its front door, because of Tech Tower and Bobby Dodd Stadium. Today it is also a busy urban street that connects Georgia Tech to Midtown Atlanta - with traffic, pedestrians, and urban problems too. As Tech expands southward, North Avenue is no longer the edge of campus.

Objectives:
1. Make North Avenue a gateway corridor to Georgia Tech that feels like it is passing through the campus.
2. Create a unified streetscape that is safe and attractive for pedestrians on a daily basis and for special events.
3. Make North Avenue a vital link to Midtown.
4. Preserve and enhance the historic district.

Requirements:
1. Treat the eastern end of North Avenue as a Primary Street Entrance (Section 5.18 Campus Perimeter and Entrances).
2. Establish a unified streetscape:
 - Street Trees (Section 6.2.9 Street Trees)
 - Type-4 Pedestrian Walkway (Section 6.3.1 Circulation Types).
 - Type B Pavement: Brick with Brick Bands or Type-C Pavement: Concrete with Brick Bands (Section 6.3.2 Pavement Types).
 - City of Atlanta Street Lights.
 - GT Traditional Lampposts (Section 6.3.8 Outdoor Lighting)
3. Open up view into the Tech Tower Quad. (Figure 5-47). Conform to Historic Preservation Best Practices.
4. Keep existing arched entrance to quad.
5. Refine the small parking area at Tech Tower:
 - Type-F Paving: Open joint concrete paver with granite curb (Section 6.3.2 Pavement Types)
 - Brick piers at entrance.
 - Treat Cherry Street as a Minor Campus Entrance (Section 5.18 Campus Perimeter and Entrances). Remove Georgia Tech sign at Cherry Street and replace it with a simple sign incorporated into brick entrance piers.

TECHWOOD DRIVE STREETSCEAPE

(As the 2011 Landscape Master Plan does not provide a description for this street corridor, the project team has outlined the following design guidelines.)

1. Establish a unified streetscape:
 - Street Trees (Section 6.2.9 Street Trees)
 - Type-4 Pedestrian Walkway (Section 6.3.1 Circulation Types).
 - Type D Pavement: Concrete with Brick Bands or Type-D Pavement: Concrete with Concrete Bands (Section 6.3.2 Pavement Types).
 - City of Atlanta Street Lights.
 - GT Traditional Lampposts (Section 6.3.8 Outdoor Lighting)
 - Add striped bicycle lanes (Section 6.3.5 Bicycle Facilities)

Credit: Georgia Institute of Technology Landscape Master Plan